机械加工中哪些因素会造成工件变形?

发布时间:

2018年01月15日


机械加工中的工件变形问题,是比较难以解决的问题。首先必须分析产生变形的原因,然后才能采取应对的措施。

01.工件的材质和结构会影响工件的变形

变形量的大小与形状复杂程度、长宽比和壁厚大小成正比,与材质的刚性和稳定性成正比。所以在设计零件时尽可能的减小这些因素对工件变形的影响。

尤其在大型零件的结构上更应该做到结构合理。在加工前也要对毛坯硬度、疏松等缺陷进行严格控制,保证毛坯质量,减少其带来的工件变形。

02.工件装夹时造成的变形

工件装夹时,首先要选择正确的夹紧点,然后根据夹紧点的位置选择适当的夹紧力。因此尽可能使夹紧点和支撑点一致,使夹紧力作用在支撑上,夹紧点应尽可能靠近加工面,且选择受力不易引起夹紧变形的位置。

当工件上有几个方向的夹紧力作用时,要考虑夹紧力的先后顺序,对于使工件与支撑接触夹紧力应先作用,且不易太大,对于平衡切削力的主要夹紧力,应作用在最后。

其次要增大工件与夹具的接触面积或采用轴向夹紧力。增加零件的刚性,是解决发生夹紧变形的有效办法,但由于薄壁类零件的形状和结构的特点,导致其具有较低的刚性。这样在装夹施力的作用下,就会产生变形。

增大工件与夹具的接触面积,可有效降低工件件装夹时的变形。如在铣削加工薄壁件时,大量使用弹性压板,目的就是增加接触零件的受力面积;在车削薄壁套的内径及外圆时,无论是采用简单的开口过渡环,还是使用弹性芯轴、整弧卡爪等,均采用的是增大工件装夹时的接触面积。这种方法有利于承载夹紧力,从而避免零件的变形。采用轴向夹紧力,在生产中也被广泛使用,设计制作专用夹具可使夹紧力作用在端面上,可以解决由于工件壁薄,刚性较差,导致的工件弯曲变形。

03.工件加工时造成的变形

工件在切削过程中由于受到切削力的作用,产生向着受力方向的弹性形变,就是我们常说的让刀现象。应对此类变形在刀具上要采取相应的措施,精加工时要求刀具锋利,一方面可减少刀具与工件的摩擦所形成的阻力,另一方面可提高刀具切削工件时的散热能力,从而减少工件上残余的内应力。

例如在铣削薄壁类零件的大平面时,使用单刃铣削法,刀具参数选取了较大的主偏角和较大的前角,目的就是为了减少切削阻力。由于这种刀具切削轻快,减少了薄壁类零件的变形,在生产中得到广泛的应用。

在薄壁零件的车削中,合理的刀具角度对车削时切削力的大小,车削中产生的热变形、工件表面的微观质量都是至关重要的。刀具前角大小,决定着切削变形与刀具前角的锋利程度。前角大,切削变形和摩擦力减小,但前角太大,会使刀具的楔角减小,刀具强度减弱,刀具散热情况差,磨损加快。所以,一般车削钢件材料的薄壁零件时,用高速刀具,前角取6°~30°,用硬质合金刀具,前角取5°~20°。

刀具的后角大,摩擦力小,切削力也相应减小,但后角过大也会使刀具强度减弱。在车削薄壁零件时,用高速钢车刀,刀具后角取6°~12°,用硬质合金刀具,后角取4°~12°,精车时取较大的后角,粗车时取较小的后角。车薄壁零件的内外圆时,取大的主偏角。正确选择刀具是应对工件变形的必要条件。

加工中刀具和工件摩擦产生的热量也会使工件变形,因此在很多时候选择高速切削加工。在高速切削加工中,由于切屑在较短时间内被切除,绝大部分切削热被切屑带走,减少了工件的热变形;其次,在高速加工中,由于切削层材料软化部分的减少,也可减少零件加工的变形,有利于保证零件的尺寸、形状精度。另外,切削液主要用来减少切削过程中的摩擦和降低切削温度。合理使用切削液对提高刀具的耐用度和加工表面质量、加工精度具有重要作用。因此,在加工中为防止零件变形必须合理使用充分的切削液。

加工中采用合理的切削用量是保证零件精度的关键因素。在加工精度要求较高的薄壁类零件时,一般采取对称加工,使相对的两面产生的应力均衡,达到一个稳定状态,加工后工件平整。但当某一工序采取较大的吃刀量时,由于拉应力、压应力失去平衡,工件便会产生变形。

薄壁零件车削时变形是多方面的,装夹工件时的夹紧力,切削工件时切削力,工件阻碍刀具切削时产生的弹性变形和塑性变形,使切削区温度升高而产生热变形。所以,我们要在粗加工时,背吃刀量和进给量可以取大些;精加工时,刀量一般在0.2~0.5mm,进给量一般在0.1~0.2mm/r,甚至更小,切削速度6~120m/min,精车时用尽量高的切削速度,但不易过为高。合理选择好切削用量,从而到达减少零件变形的目的。

04.加工后应力变形

加工后,零件本身存在内应力,这些内应力分布是一种相对平衡的状态,零件外形相对稳定,但是去除一些材料和热处理后内应力发生变化,这时工件需要重新达到力的平衡所以外形就发生了变化。解决这类变形可以通过热处理的方法,把需要校直的工件叠成一定高度,采用一定工装压紧成平直状态,然后把工装和工件一起放入加热炉中,根据零件材料的不同,选择不同的加热温度和加热时间。热校直后,工件内部组织稳定。此时,工件不仅得到了较高的直线度,而且加工硬化现象得到消除,更便于零件的进一步精加工。铸件要做到时效处理,尽量消除内部的残余应力,采用变形后再加工的方式,即粗加工-时效-再加工。

对于大型零件要采用仿形加工,即预计工件装配后的变形量,加工时在相反的方向预留出变形量,可有效的防止零件在装配后的变形。

综上所述,对于易变形工件,在毛坯和加工工艺上都要采用相应的对策,需根据不同情况加以分析,都会找到一条合适的工艺路线的。当然,上述的方法只是进一步减小工件变形,如果想得到更高精的工件,还需要不断的学习、探讨和研究。

相关技术交流


齿轮修型的作用

齿轮作为机械传动的核心部件,其传动精度与可靠性直接决定设备整体性能。理想状态下,渐开线齿轮可实现平稳啮合,但实际工况中制造误差、受力变形、热变形等因素会导致啮合冲击、载荷偏载等问题。齿轮修型通过对齿廓、齿向等关键部位进行微量精准修整,从根源上改善啮合特性,该技术已成为提升齿轮传动质量的核心手段。

2025年11月24日

齿轮裂纹的危害

齿轮作为机械传动系统的“动力枢纽”,其结构完整性直接决定设备运行的稳定性与可靠性。在制造、安装、运行及维护的全生命周期中,齿轮易因材料缺陷、载荷过载、疲劳磨损、腐蚀侵蚀等因素产生裂纹。裂纹作为一种典型的隐性失效隐患,初期往往难以察觉,但其扩展过程会引发一系列连锁反应,从传动性能衰减逐步升级为设备停机、安全事故及重大经济损失。本文将系统解析齿轮裂纹的核心后果、传导机理及工程警示意义。 一、传动性能急剧恶化,引发系统振动噪声失控 齿轮裂纹的初始影响集中体现为传动精度下降,随着裂纹扩展,齿面接触状态与啮合特性被严重破坏,进而导致振动噪声呈指数级增长,形成“裂纹扩展—啮合失衡—振动加剧—裂纹加速扩展”的恶性循环。 1. 啮合精度失效,传动误差飙升 完整齿轮的齿面呈规则渐开线轮廓,啮合时基圆齿距精准匹配,传动误差通常控制在0.01-0.03mm范围内。当齿根或齿面出现裂纹时,裂纹区域的材料刚度降低,受载后产生局部塑性变形,导致齿距偏差、齿形畸变。实验数据显示,当裂纹深度达到齿厚的10%时,传动误差会从0.02mm骤增至0.15mm以上,远超GB/T 10095.1规定的7级精度要求。这种误差会导致齿轮啮合时出现“卡滞—打滑”交替现象,破坏传动的平稳性。 2. 振动激励增强,噪声污染超标 裂纹引发的齿面变形会使啮合过程从“面接触”变为“点接触+局部冲击”,产生周期性的振动激励。根据机械振动理论,这种激励频率与齿轮转速、齿数耦合,形成特征性的“啮合频率边频带”。某化工设备减速器齿轮实验表明:无裂纹时振动加速度有效值为2.5m/s²,噪声值为72dB;当齿根出现0.5mm深裂纹时,振动加速度升至8.3m/s²,噪声突破95dB,超过《工业企业噪声控制设计规范》(GB/T 50087)规定的85dB限值;当裂纹扩展至1.2mm时,振动加速度可达15m/s²,伴随明显的“异响—颤振”现象。 二、承载能力断崖式下降,诱发突发性断裂失效 齿轮的承载能力依赖于齿面接触强度与齿根弯曲强度的协同保障,而裂纹作为典型的应力集中源,会使局部应力急剧升高,导致强度性能大幅衰减,最终引发突发性断齿事故。 1. 应力集中效应放大,强度性能骤降 根据断裂力学理论,裂纹尖端的应力集中系数Kt与裂纹长度、尖端曲率半径相关,公式可简化为Kt=1+2√(a/ρ)(其中a为裂纹深度,ρ为裂纹尖端曲率半径)。当齿轮出现0.3mm深的齿根裂纹时,应力集中系数可从完整齿轮的1.2增至3.5以上,局部应力直接超过材料屈服强度。某风电齿轮箱齿轮(材料42CrMo)的实测数据显示:完整齿轮的齿根弯曲强度极限为850MPa,存在0.4mm深裂纹时强度极限降至320MPa,降幅达62.4%;当裂纹扩展至0.8mm时,强度极限仅为180MPa,无法承受额定载荷的50%。 2. 疲劳扩展加速,突发断齿风险激增 齿轮在变载荷工况下,裂纹会沿“最大切应力方向”疲劳扩展,扩展速率遵循Paris公式(da/dN=C(ΔK)^m,其中ΔK为应力强度因子幅)。初期微裂纹(深度<0.2mm)扩展较慢,可能维持数百小时;但当裂纹深度超过齿厚的15%时,扩展速率会提升10-15倍,从“稳定扩展”进入“失稳扩展”阶段,短时间内即可贯穿齿厚导致断齿。 三、触发连锁故障,导致系统级停机事故 齿轮作为传动系统的核心部件,其裂纹失效并非孤立事件,会通过“载荷传导”“振动传导”两种路径波及轴系、轴承、箱体等关联部件,形成多部件连锁故障,最终导致整个设备停机。 1. 轴系与轴承的二次损伤 齿轮裂纹引发的啮合冲击会通过轮毅传递至传动轴,导致轴系产生弯曲振动与扭振,使轴颈与轴承内圈的配合间隙异常变化,出现“偏磨—发热”现象。同时,断齿产生的金属碎屑会进入轴承滚道,造成滚珠与滚道的研磨损伤,引发轴承卡死。 2. 箱体与基础结构的疲劳损伤 持续的剧烈振动会通过轴承座传递至齿轮箱体,使箱体螺栓松动、结合面密封失效,出现润滑油泄漏;长期振动还会导致箱体应力集中区域(如轴承座孔周边)产生疲劳裂纹,破坏箱体的结构完整性。对于固定在混凝土基础上的设备,振动会削弱基础与设备的连接强度,引发基础沉降或开裂,进一步加剧设备失衡。某发电厂引风机齿轮箱因齿轮裂纹未及时处理,最终导致箱体开裂、基础沉降,设备停机维修长达72小时。 四、总结与防控要点 制造阶段:严控材料纯度与热处理工艺,消除初始裂纹隐患; 运行阶段:采用振动监测、油液分析(铁谱/光谱)等手段,实现裂纹早期预警; 维护阶段:发现微裂纹及时采用补焊、打磨等修复措施,避免扩展; 高危行业:建立齿轮全生命周期档案,定期进行无损检测。

2025年11月17日

齿轮加工标准化工艺路线

齿轮作为机械传动的核心部件,其加工质量直接影响设备的传动精度、效率和使用寿命。本文系统梳理齿轮加工的标准化工艺路线,涵盖从毛坯制造到最终检验的全流程,结合国家标准和行业规范,提供可直接应用于生产实践的工艺参数与技术要求,并辅以关键工序的示意图解,为齿轮制造企业提供标准化参考。

2025年10月21日

齿轮变位详解

在机械传动系统中,齿轮作为核心部件承担着动力传递与转速调节的关键作用。标准齿轮虽能满足基本传动需求,但在齿数较少、中心距调整或高强度传动场景下存在明显局限 —— 轻则产生根切削弱强度,重则无法实现预期传动比。齿轮变位技术通过巧妙改变刀具与齿坯的相对位置,从根本上解决了这些难题,成为现代齿轮设计中不可或缺的关键技术。本文将系统解读齿轮变位的原理、计算方法与工程应用,为机械设计人员提供全面参考。

2025年09月19日

齿轮:机械世界的“传力达人”,你真的了解它吗?

在机械装置中,有一个看似普通却至关重要的零件——齿轮。它长着一圈整齐的“牙齿”,默默承担着传递动力、改变速度的重任。

2025年08月11日