15条刀具选用归纳,让机加工得心应手

发布时间:

2016年04月12日


 

刀具选用在机加工中的重要地位不言而喻,学会选择刀具能帮助你工作起来得心应手,刀具选用的十五条重点,你必须重视!

1、加工中最重要的是刀具

  任何一把刀具停止工作,都意味着生产出现停顿。但并不意味着每把刀具都具有同样重要的地位。切削加工时间最长的刀具对生产周期的影响更大,因此同等前提下,应当给予这把刀具更多关注。此外,还应该注意加工关键部件及加工公差范围要求最严格的刀具。另外,对切屑控制相对差的刀具,如钻头、切槽刀、螺纹加工刀具也应重点关注。因为切屑控制不佳可引起停机。

2、与机床相匹配

  刀具分右手刀及左手刀,因此选择正确的刀具非常重要。通常,右手刀具适合于逆时针旋转(CCW)的机床(沿主轴方向看);左手刀具适合于顺时针旋转(CW)的机床。如果你有几台车床,一些夹持左手刀具,其他的左右手兼容,那么请选择左手刀具。而对于铣削而言,人们通常倾向于选择通用性更强的刀具。但是尽管此类刀具涵盖的加工范围更大,也令你即刻损失了刀具刚性,增大了刀具挠曲变形,降低了切削参数,同时更容易引起加工振动。另外,机床更换刀具的机械手对刀具的尺寸及重量也有所限制。若你购买的是主轴带内冷却通孔的机床,也请选带内冷却通孔刀具。

3、与被加工材料相匹配

  碳钢是机械加工中最常见的被加工材料,因此大多数刀具基于优化碳钢加工设计。刀片牌号需依据被加工材料进行选择。刀具制造商提供一系列的刀体及相配合的刀片用于加工诸如高温合金、钛合金、铝、复合材料、塑料及纯金属等非铁材料。当你需要加工上述材料时,请选择相匹配材质的刀具。绝大多数品牌都有各种系列刀具,标明适合加工什么材料。

4、刀具规格

  常见的错误是所选的车刀规格太小,铣刀规格太大。大规格的车刀刚性更佳;而大规格的铣刀不仅价格更高,且空切时间更长。总体而言,大规格的刀具价格高于小规格刀具。

5、选择可换刀片式还是重新修磨式刀具

  遵循的原则很简单:尽量避免修磨刀具。除少数钻头和端面铣刀外,条件允许下,尽量选择可换刀片式或可换刀头式刀具。这会为你节省劳动力开支,同时获得稳定的加工效果。

6、刀具材料及牌号

  刀具材料及牌号的选择与被加工材料性能,机床最大速度及进给率密切相关。为被加工材料组选择更通用的刀具牌号,通常会选择涂层合金牌号。参考刀具供应商提供的“牌号应用推荐图表”。在实际应用中,常见的错误是用替换其他刀具厂家类似的材料牌号试图解决刀具寿命问题。如果你现有的刀具不理想,那么改选接近的其他厂家牌号很可能带来类似结果。要解决问题,必须明确刀具失效原因。

7、功率要求

  指导原则是物尽其用。如你购买了功率为20hp的铣床,那么,在工件及夹具允许的情况下,选择合适刀具和加工参数,使其能实现机床80%的功率运用。需特别留意机床用户手册中的功率/转速表,依据机床功率的有效功率范围选择可实现更佳切削应用的刀具。

8、切削刃数

  原则是,多多益善。购买带两倍切削刃的车刀并不意味着支付两倍的费用。在过去的十年,先进的设计,使得切槽刀、切断刀以及一些铣刀片的切削刃数目也实现了翻番。以先进的带有16个切削刃刀片的铣刀替换原来的仅带4个切削刃的刀片的铣刀并不少见。而增加有效切削刃数还直接影响到工作台进给及生产率。

9、选择整体式刀具还是模块式刀具

  小规格刀具更适合整体式设计;大规格刀具更适合模块式设计。对大规格刀具而言,当刀具失效,用户往往希望仅仅更换小而且价格不高的部件就可重获新刀具。对于切槽刀及镗刀,尤其如此。

10、选择单一刀具还是多功能刀具

  件越小往往越适用复合刀具。例如,一把多功能刀具,可复合钻削、车削、内孔加工、螺纹加工和倒角加工。当然越复杂的工件也越适用于多功能刀具。机床只有在切削的时候才能为你带来收益,而不是在停机的时候。

11、选择标准刀具还是非标特制刀具

  随着数控加工中心(CNC)的普及,大家普遍认为可通过编程来实现工件形状,而不是依靠刀具,因此,不再需要非标特制刀具。而事实上,今天非标刀具仍占总刀具销售数量的15%。为什么?采用专用刀具可满足精密的工件尺寸要求,减少工序并缩短加工周期。对于大批量生产而言,非标特制刀具可很好地缩短加工周期、降低成本。

12、切屑控制

  请记住,你的目的是加工出工件而不是切屑,但切屑可以清楚地反映出刀具的切削状态。总体而言,人们对切屑存在成见,因大多数人并未接受解读切屑的训练。记住以下原则:好的切屑不会破坏加工,不好的切屑正相反。

  刀片多设计有断屑槽,而断屑槽是依据进给率来设计的,无论是轻切削的精加工还是重切削的粗加工。

  切屑越小,越难以折断。对于难加工材料而言,切屑控制是一大难题。尽管不能更换被加工材料,但可以更新刀具,调整切削速度、进给率、切削深度、刀尖圆角半径等等。优化切屑,优化加工是一个综合选择的结果。

13、编程

  面对刀具、工件及数控加工机床,往往需要定义刀具路径。理想的情况是,了解基本的机器代码,有先进的CAM软件包。刀具路径,必须考虑到刀具特征,如坡走铣角度,旋转方向,进给,切削速度等。每种刀具都有相应的编程技术以缩短加工周期,改进切屑,降低切削力。好的CAM软件包可节省劳动力,提升生产率。

14、选择革新的刀具还是常规成熟刀具

  以目前先进技术的发展速度,切削刀具的生产率,每10年就能翻番。对比10年前推荐的刀具切削参数,你会发现,现今的刀具可令加工效率翻倍,切削功率却降低了30%。新刀具合金基体更强固,韧性更高,可实现更高切削速度,更低切削力。断屑槽及牌号对应用的专一性更低,通用性更广。同时,现代刀具还增加了多功能性及模块化,这两者共同降低了库存,拓展了刀具应用。刀具发展还带动了新的产品设计和加工理念,如兼具车削和切槽功能的霸王刀、大进给铣刀,推动了高速加工、微量润滑冷却(MQL)加工及硬车技术等。基于以上因素及其他的原因,你也需要跟进最优选的加工方式,获悉最新的先进刀具技术,否则就有落后的危险。

15、价格

  刀具价格固然重要,却比不上因刀具而付出的生产成本的重要性。虽然刀具有其相应价格,但刀具的真正价值在于为生产率所履行的职责。通常,价格最低的刀具是造成生产成本最高的刀具。切削刀具的价格仅占零件成本的3%。因此请关注刀具的生产率,而不是其购买价格。

相关技术交流


齿轮修型的作用

齿轮作为机械传动的核心部件,其传动精度与可靠性直接决定设备整体性能。理想状态下,渐开线齿轮可实现平稳啮合,但实际工况中制造误差、受力变形、热变形等因素会导致啮合冲击、载荷偏载等问题。齿轮修型通过对齿廓、齿向等关键部位进行微量精准修整,从根源上改善啮合特性,该技术已成为提升齿轮传动质量的核心手段。

2025年11月24日

齿轮裂纹的危害

齿轮作为机械传动系统的“动力枢纽”,其结构完整性直接决定设备运行的稳定性与可靠性。在制造、安装、运行及维护的全生命周期中,齿轮易因材料缺陷、载荷过载、疲劳磨损、腐蚀侵蚀等因素产生裂纹。裂纹作为一种典型的隐性失效隐患,初期往往难以察觉,但其扩展过程会引发一系列连锁反应,从传动性能衰减逐步升级为设备停机、安全事故及重大经济损失。本文将系统解析齿轮裂纹的核心后果、传导机理及工程警示意义。 一、传动性能急剧恶化,引发系统振动噪声失控 齿轮裂纹的初始影响集中体现为传动精度下降,随着裂纹扩展,齿面接触状态与啮合特性被严重破坏,进而导致振动噪声呈指数级增长,形成“裂纹扩展—啮合失衡—振动加剧—裂纹加速扩展”的恶性循环。 1. 啮合精度失效,传动误差飙升 完整齿轮的齿面呈规则渐开线轮廓,啮合时基圆齿距精准匹配,传动误差通常控制在0.01-0.03mm范围内。当齿根或齿面出现裂纹时,裂纹区域的材料刚度降低,受载后产生局部塑性变形,导致齿距偏差、齿形畸变。实验数据显示,当裂纹深度达到齿厚的10%时,传动误差会从0.02mm骤增至0.15mm以上,远超GB/T 10095.1规定的7级精度要求。这种误差会导致齿轮啮合时出现“卡滞—打滑”交替现象,破坏传动的平稳性。 2. 振动激励增强,噪声污染超标 裂纹引发的齿面变形会使啮合过程从“面接触”变为“点接触+局部冲击”,产生周期性的振动激励。根据机械振动理论,这种激励频率与齿轮转速、齿数耦合,形成特征性的“啮合频率边频带”。某化工设备减速器齿轮实验表明:无裂纹时振动加速度有效值为2.5m/s²,噪声值为72dB;当齿根出现0.5mm深裂纹时,振动加速度升至8.3m/s²,噪声突破95dB,超过《工业企业噪声控制设计规范》(GB/T 50087)规定的85dB限值;当裂纹扩展至1.2mm时,振动加速度可达15m/s²,伴随明显的“异响—颤振”现象。 二、承载能力断崖式下降,诱发突发性断裂失效 齿轮的承载能力依赖于齿面接触强度与齿根弯曲强度的协同保障,而裂纹作为典型的应力集中源,会使局部应力急剧升高,导致强度性能大幅衰减,最终引发突发性断齿事故。 1. 应力集中效应放大,强度性能骤降 根据断裂力学理论,裂纹尖端的应力集中系数Kt与裂纹长度、尖端曲率半径相关,公式可简化为Kt=1+2√(a/ρ)(其中a为裂纹深度,ρ为裂纹尖端曲率半径)。当齿轮出现0.3mm深的齿根裂纹时,应力集中系数可从完整齿轮的1.2增至3.5以上,局部应力直接超过材料屈服强度。某风电齿轮箱齿轮(材料42CrMo)的实测数据显示:完整齿轮的齿根弯曲强度极限为850MPa,存在0.4mm深裂纹时强度极限降至320MPa,降幅达62.4%;当裂纹扩展至0.8mm时,强度极限仅为180MPa,无法承受额定载荷的50%。 2. 疲劳扩展加速,突发断齿风险激增 齿轮在变载荷工况下,裂纹会沿“最大切应力方向”疲劳扩展,扩展速率遵循Paris公式(da/dN=C(ΔK)^m,其中ΔK为应力强度因子幅)。初期微裂纹(深度<0.2mm)扩展较慢,可能维持数百小时;但当裂纹深度超过齿厚的15%时,扩展速率会提升10-15倍,从“稳定扩展”进入“失稳扩展”阶段,短时间内即可贯穿齿厚导致断齿。 三、触发连锁故障,导致系统级停机事故 齿轮作为传动系统的核心部件,其裂纹失效并非孤立事件,会通过“载荷传导”“振动传导”两种路径波及轴系、轴承、箱体等关联部件,形成多部件连锁故障,最终导致整个设备停机。 1. 轴系与轴承的二次损伤 齿轮裂纹引发的啮合冲击会通过轮毅传递至传动轴,导致轴系产生弯曲振动与扭振,使轴颈与轴承内圈的配合间隙异常变化,出现“偏磨—发热”现象。同时,断齿产生的金属碎屑会进入轴承滚道,造成滚珠与滚道的研磨损伤,引发轴承卡死。 2. 箱体与基础结构的疲劳损伤 持续的剧烈振动会通过轴承座传递至齿轮箱体,使箱体螺栓松动、结合面密封失效,出现润滑油泄漏;长期振动还会导致箱体应力集中区域(如轴承座孔周边)产生疲劳裂纹,破坏箱体的结构完整性。对于固定在混凝土基础上的设备,振动会削弱基础与设备的连接强度,引发基础沉降或开裂,进一步加剧设备失衡。某发电厂引风机齿轮箱因齿轮裂纹未及时处理,最终导致箱体开裂、基础沉降,设备停机维修长达72小时。 四、总结与防控要点 制造阶段:严控材料纯度与热处理工艺,消除初始裂纹隐患; 运行阶段:采用振动监测、油液分析(铁谱/光谱)等手段,实现裂纹早期预警; 维护阶段:发现微裂纹及时采用补焊、打磨等修复措施,避免扩展; 高危行业:建立齿轮全生命周期档案,定期进行无损检测。

2025年11月17日

齿轮加工标准化工艺路线

齿轮作为机械传动的核心部件,其加工质量直接影响设备的传动精度、效率和使用寿命。本文系统梳理齿轮加工的标准化工艺路线,涵盖从毛坯制造到最终检验的全流程,结合国家标准和行业规范,提供可直接应用于生产实践的工艺参数与技术要求,并辅以关键工序的示意图解,为齿轮制造企业提供标准化参考。

2025年10月21日

齿轮变位详解

在机械传动系统中,齿轮作为核心部件承担着动力传递与转速调节的关键作用。标准齿轮虽能满足基本传动需求,但在齿数较少、中心距调整或高强度传动场景下存在明显局限 —— 轻则产生根切削弱强度,重则无法实现预期传动比。齿轮变位技术通过巧妙改变刀具与齿坯的相对位置,从根本上解决了这些难题,成为现代齿轮设计中不可或缺的关键技术。本文将系统解读齿轮变位的原理、计算方法与工程应用,为机械设计人员提供全面参考。

2025年09月19日

齿轮:机械世界的“传力达人”,你真的了解它吗?

在机械装置中,有一个看似普通却至关重要的零件——齿轮。它长着一圈整齐的“牙齿”,默默承担着传递动力、改变速度的重任。

2025年08月11日