用NX CAM软件进行编程时,减小刀具振动的方法

发布时间:

2017年12月25日


在数控加工领域,加工中心,数控铣床和雕刻机的高速加工已被广泛的使用。在高速加工时,主轴旋转速度通常在1-2万转/每分钟,刀具进给速度和主轴转速成正比,移动非常快,而且数控机床的铣削和镗削要比简单的车削受力复杂的多。在这种情况下,刀具振动变成切削中非常重要的因素。引起刀具振动的因素很多,刀具形式和材料、工件材料、切削参数和刀具切削轨迹等都会引起刀具的振动,本文将从刀具切削轨迹方面来谈谈在用NX CAM软件来进行编程时,减小刀具振动的一些技巧。

减振方法

传统编程时,切削转角的方法是使用线性切削(G1),在转角中过渡不够连续。当刀具到达角落时,由于线性轴的动力特性限制,刀具必须减速。在电机改变进给方向前,有一短暂的停顿,会产生大量的热量和摩擦,导致切削力的不稳定(俗称弹刀),并常常使角落切削不足。刀具越大或刀具总悬伸越长,振动越强。这是编程工作的一大难点。

此问题的最佳解决方法如下。

(1)使用圆角半径比转角半径小的刀具,此方法仅相对小型工件。

(2)刀轨进行圆角处理。在NX CAM的平面轮廓铣中,具体操作在拐角和进给率控制选项中,设置凸角添加圆弧,这时当刀具铣削过程中遇到凸角时以圆弧过渡进行切削加工,其中圆弧的圆心为凸角的顶端,半径为刀具直径。在侧壁亦可添加圆角。这种加工方法在工件的边界处不会产生停顿,刀具的运动提供了光滑和连续的圆弧过渡(G02或G03),然后在减速设置中打上勾,则系统在拐角处对刀具设置减速操作。这些设置都大大起到了减振的效果。

(3)通过圆弧插补产生比图纸上规定稍大些的圆角半径。这样,有时就可在粗加工中使用较大的刀具,以保持高生产效率。在角落处余下的加工余量可以采用较小的刀具进行固定铣削或圆弧插补切削。

(4)在加工陡峭的外形轮廓面时,通常采用ZLEVEL轮廓铣,在垂直于刀具方向的平面切削层上沿着零件轮廓去除材料。在高速加工时,虽然可以用ZLEVEL轮廓铣加工出来,但在层和层的过渡时,刀具切削转向,而且是垂直下刀会引起刀具振动变大,刀具容易折断且零件表面质量不高,会出现明显的刀具痕迹。建议使用曲面区域驱动,改分层切削法为螺旋切削法。具体方法如下:先创建一个辅助的圆柱面,使用曲面区域驱动操作,指定回转体为零件体,指定刚建立的圆柱面为驱动面,在该圆柱面上建立驱动点阵,然后定义切削方向,选择圆柱面上部的水平方向为第一切削方向,在所选的箭头上出现一个小圆圈的时候,返回到曲面驱动方法对话框。驱动点阵的切削方式设定为螺旋刀轨,然后通过驱动点沿着投影矢量方向向零件表面上投射,这时将投影矢量方向设定指向直线,直线设定为为回转体零件的中间轴线。将圆柱形螺旋刀轨按照指向中间轴线的投影方式投射到工件体上,这样可以产生一个切削工件轮廓的螺旋形刀轨。这样的刀轨生成过程虽然比较复杂,但螺旋驱动方式的最大优点是,从一条刀具轨迹运动到下一条刀具轨迹的过程中,运动平缓而光顺,没有突然换向,所以整个过程可以保持固定的切削速度。正因为这个原因,螺旋驱动方式很适合高速加工。

(5)如果加工较平坦的曲面时,通常用曲面区域驱动方式,该驱动方式通过指定曲面作为驱动几何体,在驱动几何体上生成网格状的驱动点阵。这些驱动点阵列沿着指定的投影矢量方向投影到零件表面上以生成投影点,从而生成刀具轨迹。但在高速加工时,刀具轨迹图样无论是选择跟随周边还是同心圆等,在步进时都容易产生刀具的振动。这时如果加工曲面比较简单,接近圆形,应改为用固定轴轮廓铣中的螺旋驱动方式,该驱动方式以螺旋线形式,从中心点展开来定义驱动点。这些驱动点产生在通过中心点且与投影矢量垂直的平面上,中心点可以由用户来进行指定,最终这些螺旋驱动点向零件表面投影,产生适合高速加工的螺旋刀具轨迹。

相关技术交流


齿轮修型的作用

齿轮作为机械传动的核心部件,其传动精度与可靠性直接决定设备整体性能。理想状态下,渐开线齿轮可实现平稳啮合,但实际工况中制造误差、受力变形、热变形等因素会导致啮合冲击、载荷偏载等问题。齿轮修型通过对齿廓、齿向等关键部位进行微量精准修整,从根源上改善啮合特性,该技术已成为提升齿轮传动质量的核心手段。

2025年11月24日

齿轮裂纹的危害

齿轮作为机械传动系统的“动力枢纽”,其结构完整性直接决定设备运行的稳定性与可靠性。在制造、安装、运行及维护的全生命周期中,齿轮易因材料缺陷、载荷过载、疲劳磨损、腐蚀侵蚀等因素产生裂纹。裂纹作为一种典型的隐性失效隐患,初期往往难以察觉,但其扩展过程会引发一系列连锁反应,从传动性能衰减逐步升级为设备停机、安全事故及重大经济损失。本文将系统解析齿轮裂纹的核心后果、传导机理及工程警示意义。 一、传动性能急剧恶化,引发系统振动噪声失控 齿轮裂纹的初始影响集中体现为传动精度下降,随着裂纹扩展,齿面接触状态与啮合特性被严重破坏,进而导致振动噪声呈指数级增长,形成“裂纹扩展—啮合失衡—振动加剧—裂纹加速扩展”的恶性循环。 1. 啮合精度失效,传动误差飙升 完整齿轮的齿面呈规则渐开线轮廓,啮合时基圆齿距精准匹配,传动误差通常控制在0.01-0.03mm范围内。当齿根或齿面出现裂纹时,裂纹区域的材料刚度降低,受载后产生局部塑性变形,导致齿距偏差、齿形畸变。实验数据显示,当裂纹深度达到齿厚的10%时,传动误差会从0.02mm骤增至0.15mm以上,远超GB/T 10095.1规定的7级精度要求。这种误差会导致齿轮啮合时出现“卡滞—打滑”交替现象,破坏传动的平稳性。 2. 振动激励增强,噪声污染超标 裂纹引发的齿面变形会使啮合过程从“面接触”变为“点接触+局部冲击”,产生周期性的振动激励。根据机械振动理论,这种激励频率与齿轮转速、齿数耦合,形成特征性的“啮合频率边频带”。某化工设备减速器齿轮实验表明:无裂纹时振动加速度有效值为2.5m/s²,噪声值为72dB;当齿根出现0.5mm深裂纹时,振动加速度升至8.3m/s²,噪声突破95dB,超过《工业企业噪声控制设计规范》(GB/T 50087)规定的85dB限值;当裂纹扩展至1.2mm时,振动加速度可达15m/s²,伴随明显的“异响—颤振”现象。 二、承载能力断崖式下降,诱发突发性断裂失效 齿轮的承载能力依赖于齿面接触强度与齿根弯曲强度的协同保障,而裂纹作为典型的应力集中源,会使局部应力急剧升高,导致强度性能大幅衰减,最终引发突发性断齿事故。 1. 应力集中效应放大,强度性能骤降 根据断裂力学理论,裂纹尖端的应力集中系数Kt与裂纹长度、尖端曲率半径相关,公式可简化为Kt=1+2√(a/ρ)(其中a为裂纹深度,ρ为裂纹尖端曲率半径)。当齿轮出现0.3mm深的齿根裂纹时,应力集中系数可从完整齿轮的1.2增至3.5以上,局部应力直接超过材料屈服强度。某风电齿轮箱齿轮(材料42CrMo)的实测数据显示:完整齿轮的齿根弯曲强度极限为850MPa,存在0.4mm深裂纹时强度极限降至320MPa,降幅达62.4%;当裂纹扩展至0.8mm时,强度极限仅为180MPa,无法承受额定载荷的50%。 2. 疲劳扩展加速,突发断齿风险激增 齿轮在变载荷工况下,裂纹会沿“最大切应力方向”疲劳扩展,扩展速率遵循Paris公式(da/dN=C(ΔK)^m,其中ΔK为应力强度因子幅)。初期微裂纹(深度<0.2mm)扩展较慢,可能维持数百小时;但当裂纹深度超过齿厚的15%时,扩展速率会提升10-15倍,从“稳定扩展”进入“失稳扩展”阶段,短时间内即可贯穿齿厚导致断齿。 三、触发连锁故障,导致系统级停机事故 齿轮作为传动系统的核心部件,其裂纹失效并非孤立事件,会通过“载荷传导”“振动传导”两种路径波及轴系、轴承、箱体等关联部件,形成多部件连锁故障,最终导致整个设备停机。 1. 轴系与轴承的二次损伤 齿轮裂纹引发的啮合冲击会通过轮毅传递至传动轴,导致轴系产生弯曲振动与扭振,使轴颈与轴承内圈的配合间隙异常变化,出现“偏磨—发热”现象。同时,断齿产生的金属碎屑会进入轴承滚道,造成滚珠与滚道的研磨损伤,引发轴承卡死。 2. 箱体与基础结构的疲劳损伤 持续的剧烈振动会通过轴承座传递至齿轮箱体,使箱体螺栓松动、结合面密封失效,出现润滑油泄漏;长期振动还会导致箱体应力集中区域(如轴承座孔周边)产生疲劳裂纹,破坏箱体的结构完整性。对于固定在混凝土基础上的设备,振动会削弱基础与设备的连接强度,引发基础沉降或开裂,进一步加剧设备失衡。某发电厂引风机齿轮箱因齿轮裂纹未及时处理,最终导致箱体开裂、基础沉降,设备停机维修长达72小时。 四、总结与防控要点 制造阶段:严控材料纯度与热处理工艺,消除初始裂纹隐患; 运行阶段:采用振动监测、油液分析(铁谱/光谱)等手段,实现裂纹早期预警; 维护阶段:发现微裂纹及时采用补焊、打磨等修复措施,避免扩展; 高危行业:建立齿轮全生命周期档案,定期进行无损检测。

2025年11月17日

齿轮加工标准化工艺路线

齿轮作为机械传动的核心部件,其加工质量直接影响设备的传动精度、效率和使用寿命。本文系统梳理齿轮加工的标准化工艺路线,涵盖从毛坯制造到最终检验的全流程,结合国家标准和行业规范,提供可直接应用于生产实践的工艺参数与技术要求,并辅以关键工序的示意图解,为齿轮制造企业提供标准化参考。

2025年10月21日

齿轮变位详解

在机械传动系统中,齿轮作为核心部件承担着动力传递与转速调节的关键作用。标准齿轮虽能满足基本传动需求,但在齿数较少、中心距调整或高强度传动场景下存在明显局限 —— 轻则产生根切削弱强度,重则无法实现预期传动比。齿轮变位技术通过巧妙改变刀具与齿坯的相对位置,从根本上解决了这些难题,成为现代齿轮设计中不可或缺的关键技术。本文将系统解读齿轮变位的原理、计算方法与工程应用,为机械设计人员提供全面参考。

2025年09月19日

齿轮:机械世界的“传力达人”,你真的了解它吗?

在机械装置中,有一个看似普通却至关重要的零件——齿轮。它长着一圈整齐的“牙齿”,默默承担着传递动力、改变速度的重任。

2025年08月11日